

Studying Stomach Cancer in the Lab

Gastroesophageal Cancer Symposium Debbie's Dream Foundation

Sandra Ryeom, Ph.D.

From Bench to Bedside

- basic science research
- animal models

Why mice?

99.5% genetic similarity

96-99% genetic similarity

90% genetic similarity

80% genetic similarity

Mouse Models to Study Cancer

- Mice have 75% genetic similarity to humans but 99% of mouse genes have human analogs
- Small size
- Easy to breed
- Numerous genetic manipulations possible
- Experiments are completed quicker and are more tightly controlled than human studies

Correlation Between Mice and Human Age

Correlation between mouse and human age changes at different stages (weaning, puberty, adulthood, reproductive senescence...)

Dutta et al. Life Sciences 2016

Mice and Humans have Similar Anatomy

B Mouse fore and glandular stomach

C Human glandular stomach

Nguyen A, et al. Disease Models & Mech. 2015

Different Ways to Model Cancer in Mice

	Cancer Model	Approach	Pros	Cons
Sur S	Carcinogen induced	Expose mouse to carcinogen	Carcinogens promote tumor formation	Unknown genetic alterations, variable tumor development
	Xenograft transplant	Inject human or mouse tumor cells into mice	Can easily measure/watch tumor growth	Incompatible mouse host and human tumor cells
	Orthotopic transplant	Inject tumor cells into tissue of origin	Tumors grow in proper environment	Not possible in all organs, large number of tumor cells injected
	Transgenic	Genetically engineer mouse tumors (GEMM)	Recapitulates mutations in human tumors	Takes a long time to generate
Sug	Patient-derived xenograft	Inject human tumors directly from patients into mice (PDX)	Can study human tumors in vivo	Difficult to obtain human tumors

Gastric Cancer Subtypes

Monitoring the Weight of Gastric Cancer Mice

Average lifespan of mouse 2 years (~80 yo human)

Gastric Cancer in Mice- Linitis Plastica

- Gastric cancer mice with enlarged dysmorphic stomach
- Thick, rigid, and whitened Similar to Linitis Plastica or Leather Bottle stomach seen in patients

Healthy Mouse Stomach

Gastric Cancer Mouse Stomach

Pathology of Gastric Cancer Mouse Models is Similar to Human Gastric Cancer

Intestinal Type Diffuse type

Mice Can be Engineered with Molecular Markers to Follow Cancer Progression

GFP mouse

RED = tumor cells GREEN= blood vessels from mice

Zimmer et al. 2015

We can Monitor Gastric Cancer Progression in our Mice

Advanced Gastric Cancer: Metastatic Progression

Gastric Cancer Mice Metastasize to Lymph Nodes, Lung and Liver

Perigastric Lymph Node Mets Lungs Metastases Liver Micrometastases Image: Metastase Image: Metas

Liver mets not detected by imaging

Yellow= Cancer cells Blue = All cells

What are we studying in our Gastric Cancer mouse models?

 New treatments to slow/prevent metastases or spread of disease

• Biomarkers for early detection

Biological pathways that drive gastric cancer

Drug Discovery for New Treatments for Gastric Cancer

Clinical Trials in Gastric Cancer Mice

ARM I: 5FU + Oxaliplatin *Standard of Care*

ARM II: 5FU + Oxaliplatin + Compound X *Experimental Arm*

Experimental Schema

New Treatment Regimen is not Toxic to Mice

Survival Studies in Gastric Cancer Mice with New Therapies

Gastric Organoids to Model Stomach Cancer and screen new drugs

Mouse Stomach Tumor

How can we detect gastric cancer before we can visualize it?

• Liquid Biopsies

- Blood (Circulating tumor cells, tumor DNA)

- Stool and Urine
 - Tumor proteins, tumor DNA
- Gastric Lavage

– Tumor proteins, tumor DNA

Do Gastric Cancer Cells Circulate in the Blood When Tumors are Small?

https://www.vycap.com/application/circulating-tumor-cells/

Circulating Tumor Cells may Correlate with Metastatic Disease

CTCs in the blood can be detected by their Yellow marker

Mouse ID	Age (d)	Condition	CTCs	Lung Mets
5118	79	Moribund	676	+++++
5216	74	Moribund	25	+++
5223	70	Good	4	none

Screening Mouse Urine and Feces For Early Signs of Gastric Cancer

Serial Collection of Mouse Urine and Feces

Kamimura et al. Sci, Reports, 2018

Acknowledgements

- Jacob Till
- Charlie Ho
- Bang-Jin Kim
- Kerry Roby
- Allyson Lieberman

DEGREGORIO

FOUNDATION

Keri Schadler

Sam Yoon MSKCC

CLESS

JEFF & SARA

FAMILY FUND

SCHOTTENSTEIN

- Changhwan Yoon
- Laura Tang