Gastric Cancer Screening in Japan

Center for Epidemiology and Preventive Medicine
Department of Gastroenterology
The University of Tokyo Hospital

Nobutake Yamamichi
There are no COI with regard to this presentation.
Though the mortality and incidence of gastric cancer is gradually decreasing nationwide, it is still the 2nd common malignancy and the 3rd leading cause of cancer deaths in Japan.

In 2019, mortality of gastric cancer was 42,931/yr (men: 28,043/yr, women: 14,888/yr).

In 2017, incidence of gastric cancer was 129,476/yr (men: 89,331/yr, women: 40,145/yr).
History of Population-based Gastric Cancer Screening in Japan

1956   About 3000 people were checked by barium X-ray in Nagano prefecture (The X-ray system to screen tuberculosis was applied for gastric screening)

1960s   The buses made for X-ray based gastric screening started to be used

1960s   **Upper gastrointestinal double-contrast barium X-ray technique** for gastric cancer screening was established by Shirakabe et al.

1966   Gastric screening with X-ray started to be covered by National Treasury.

1983   Gastric screening was formally approved by national law called “Law of Health and Medical Services for the Elderly”.

1998   National support for gastric cancer screening was ceased and transferred to local government instead.

2000s   Gastric cancer screening by endoscopy was tentatively started by some local government, but has not been officially approved till 2016.

2016   **Upper gastrointestinal endoscopy** was finally approved as one of the recommended methods for organized gastric cancer screening in Japan.

---

In 1983, *H. pylori* was discovered.

Since around 1990, upper GI endoscopy started to be used as gastric screening in Ningen-Doc.
Gastric Cancer and *H. pylori* infection

**Infection of *H. pylori* is a definitive risk factor for gastric cancer.**

**Prospective observation for 10 years**

- Gastric cancer has not developed in *H. pylori*-negative group.
- About 4% of *H. pylori*-positive group developed gastric cancer during the 10 years (36/1246).


**Suppressive but limited effects of *H. pylori* eradication on the development of metachronous gastric cancer.**

The prospective follow after endoscopic resection of gastric cancer showed that *H. pylori* eradication significantly decreased the risk of metachronous gastric tumorigenesis.

- In Japan, eradication therapy for *H. pylori*-induced gastritis was approved and started to be covered by medical insurance in 2013.

The prevalence of *H. pylori* is usually high in developed countries, and it is also known to be quite high in East Asian countries. Recently, however, the infection rate of *H. pylori* is steadily declining worldwide.

Our large-scale cohort data of generally healthy people showed that the prevalence of *H. pylori* has rapidly decreased in Japan during the 14 years.

Reduced prevalence of *H. pylori* infection has changed the strategy against gastric cancer in Japan.

**< Main route of gastric tumorigenesis >**

- Normal gastric mucosa
- Chronic superficial gastritis
- Atrophic gastritis
- Intestinal metaplasia
- Gastric Cancer

Reduced prevalence of *H. pylori* infection has made it possible to stratify the risk of gastric cancer based on its infection status: 1) current infection, 2) past infection, and 3) non-infection.

- Serum-based screening
- Endoscopy-based screening
- Barium X-Ray-based screening
Risk stratification of gastric cancer development based on the serum anti-*H. pylori* IgG and serum pepsinogen level.

Since 1990s, the combination of serum anti-*H. pylori* IgG and pepsinogen (PG) test was reported to be useful to predict the risk of gastric cancer.

Based on the titer of serum anti-*H. pylori* IgG and serum pepsinogens, the subjects can be classified into Group A (HP-IgG (-), PG test (-)), Group B (HP-IgG (+), PG test (-)), Group C (HP-IgG (+), PG test (+)), and Group D (HP-IgG (-), PG test (+)). Many studies showed that gastric cancer risk increases from Group A to D in proportion to the severity of *H. pylori*-induced chronic gastritis.
Risk stratification of gastric cancer development based on the evaluation of gastric mucosa by endoscopy (Kyoto Classification).

- Atrophy
- Enlarged folds
- Diffuse redness
- RAC
- Nodularity
- Intestinal metaplasia
- Patchy redness
- Red streak
- Sticky mucus
- Map-like redness
Evaluation of the risk of future gastric cancer development based on the atrophic change of gastric mucosa by endoscopy.

**Kimura Takemoto Classification to evaluate mucosal atrophy of gastric mucosa.**

<table>
<thead>
<tr>
<th>Closed</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-I</td>
<td>O-I</td>
</tr>
<tr>
<td>C-II</td>
<td>O-II</td>
</tr>
<tr>
<td>C-III</td>
<td>O-III</td>
</tr>
</tbody>
</table>


The presence of atrophy (especially from C-II to O-III) mostly reflects the present or past infection of *H. pylori*.

**Prospective 7-year follow-up of generally healthy people focusing on the presence of gastric atrophy and gastric cancer development.**

<table>
<thead>
<tr>
<th></th>
<th>Gastric cancer (+)</th>
<th>Gastric cancer (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrophy (-)</td>
<td>2</td>
<td>4275</td>
</tr>
<tr>
<td>Atrophy (+)</td>
<td>19</td>
<td>2430</td>
</tr>
</tbody>
</table>

Log rank test: $p<0.0001$

Mucosal atrophy of stomach diagnosed by endoscopy is useful to predict gastric cancer development in the future.

Risk stratification of gastric cancer development based on the evaluation of gastric mucosa by barium X-ray examination.

Mucosal Atrophy

Enlarged Folds
Predicting the risk of gastric cancer development based on the mucosal atrophy and enlarged folds of stomach by barium X-ray.

Both mucosal atrophy and enlarged folds of stomach diagnosed by barium X-ray are useful to predict the risk of gastric cancer.
Conclusion

Though the mortality and incidence of gastric cancer is decreasing nationwide, it is still the 2nd common malignancy and the 3rd leading cause of cancer deaths in Japan.

At present, only barium X-ray and upper gastrointestinal endoscopy are the officially recommended methods for population-based gastric cancer screening in Japan.

Infection of *H. pylori* is a definitive risk factor for gastric cancer. The prevalence of *H. pylori* infection has been obviously decreasing not only in Japan but worldwide.

Reduced infection rate of *H. pylori* has changed the strategy against gastric cancer in Japan. The concept of stratifying the risk of gastric cancer based on the infection status of *H. pylori* (current, past, and non) has been widely spread in Japan.
I appreciate the attention you paid to my speech